Nonsteroidal anti-inflammatory drugs (NSAIDs) can damage the gastrointestinal tract, causing widespread morbidity and mortality. Although mechanisms of damage involve the activities of prostaglandin-endoperoxide synthase 1 (PTGS1 or cyclooxygenase [COX] 1) and PTGS1 (COX2), other factors are involved. We review the mechanisms of gastrointestinal damage induction by NSAIDs via COX-mediated and COX-independent processes. NSAIDs interact with phospholipids and uncouple mitochondrial oxidative phosphorylation, which initiates biochemical changes that impair function of the gastrointestinal barrier. The resulting increase in intestinal permeability leads to low-grade inflammation. NSAID inhibition of COX enzymes, along with luminal aggressors, results in erosions and ulcers, with potential complications of bleeding, protein loss, stricture formation, and perforation. We propose a model for NSAID-induced damage to the gastrointestinal tract that includes these complex, interacting, and inter-dependent factors. This model highlights the obstacles for the development of safer NSAIDs.

Keywords: GI; Prostaglandin; Drug-Induced Intestinal Damage; Bacteria; Bile Acids.

More than 30 million people take nonsteroidal anti-inflammatory drugs (NSAIDs) each day. This number has grown significantly with increasing use of over-the-counter and prescription NSAIDs, low-dose aspirin, and after reports of their potential antineoplastic effects. The efficacy of NSAIDs as anti-inflammatory analgesics is not in doubt, but their adverse events are problematic. These relate mainly to cardiovascular, renal, hepatic, and gastrointestinal tissues. The cardiovascular adverse events have recently received much attention, but the frequency and severity of the gastrointestinal damage continues to cause concern. Accordingly, gastroduodenal ulcer rates range from 5% to 80% in short-term endoscopy studies and from 15% to 40% in long-term users. NSAIDs also damage the small intestine—as many as 70% of long-term users of NSAIDs have small intestinal inflammation, and 30% have erosions or ulcers. The gastric and small bowel damage is associated with various management problems and, at times, life-threatening complications, such as bleeding, strictures, and perforations.

There have been many studies of the pathogenesis of NSAID-induced gastrointestinal damage. NSAIDs inhibit prostaglandin-endoperoxide synthase 1 (PTGS1 or cyclooxygenase [COX] 1) and COX2, which were believed to mediate the gastrointestinal damage. NSAID-induced decreases in mucosal levels of prostaglandins (driven by inhibition of COX1) correlate with gastric and small bowel damage, which can be attenuated by administration of exogenous prostaglandins. Proposed mechanisms of damage to the stomach involve prostaglandin-mediated increased gastric acid secretion, decreased mucus and bicarbonate secretion, decreased cell proliferation, and decreased mucosal blood flow. These are all actions that are detrimental to mucosal defense and healing, but the observed changes were only modest and the damage seemed to lack an initiative action. Furthermore, decreased mucosal prostaglandins have been found to be less important in the pathogenesis of small bowel damage.

Further studies found that gastric and small bowel mucosal prostaglandins could be decreased by 95%–98% without mucosal damage, and confirmed in COX1-knockout mice. Short-term loss or inhibition of COX2 does not cause damage, but small bowel damage is evident in mice and humans exposed to NSAIDs for long periods of time. Dual inhibition of COX1 and COX2 causes gastric and small bowel lesions, albeit somewhat less severe than the lesions caused by conventional acidic NSAIDs.

So, inhibition of COX does not seem to be the only mechanism of NSAID-induced gastrointestinal damage.

Abbreviations used in this paper: ATP, adenosine triphosphate; COX, cyclooxygenase; NSAID, nonsteroidal anti-inflammatory drug; pKₐ, logarithmic transformed acid dissociation constant.
We review the prostaglandin-independent mechanisms of NSAIDs and how these interact with the consequence of alterations in prostaglandin due to COX inhibition. We provide a model in which COX inhibition is one of several important factors in the pathogenesis of gastrointestinal damage (see Figure 1). Our model considers the effects of the specific biochemical “topical” actions of NSAIDs (ie, the effects that occur by direct contact between the NSAIDs in the lumen and mucosal epithelium after oral ingestion or biliary excretion of the drugs, as opposed to topical skin application) and the consequential increase in intestinal permeability and intestinal inflammation. These initiate damage and inhibition of COX1 and COX2 aggravate it, along with luminal aggressors, leading to development of erosions and ulcers.42,43

Biochemical Effects of Nonsteroidal Anti-Inflammatory Drugs

The biochemical actions common to all conventional NSAIDs are their topical effects, and inhibition of COX1 and COX2. These biochemical actions are brought about by the physicochemical properties that NSAIDs share, namely being lipid-soluble weak acids (see Figure 2). This combination provides them with detergent action (interaction with phospholipids), uncoupling of oxidative phosphorylation, and noncovalent inhibition of COX1 and COX2. These biochemical activities depend on the same physical and chemical characteristics, so changing these will change all of the pharmacologic actions. For example, esterification of NSAIDs causes loss of their topical effects and, at the same time, their ability to inhibit the COX enzymes.

Figure 1. Mechanisms of gastrointestinal damage by NSAIDs. In our model, the interaction between NSAIDs and phospholipids and uncoupling of oxidative phosphorylation damage intestinal cells and increase gastrointestinal permeability. Inhibition of COX reduces microvascular blood flow, and luminal aggressive factors modify and amplify this reaction, leading to inflammation, erosions, and ulcers. Principal luminal aggressors are acid and pepsin in the stomach and acid, bile, and bacteria in the small bowel.
Interactions Between Nonsteroidal Anti-Inflammatory Drugs and Phospholipids

NSAIDs interact with the intestinal mucus layer and the cell surface phospholipid bilayer. There are subtle differences in mucus thickness and composition in different regions of the gastrointestinal tract. The role of mucus is to act as a lubricant between the surface epithelium and the luminal contents, restricting access of large hydrophilic molecules, digestive enzymes, and bacteria to the surface epithelium. In the stomach, mucus also buffers luminal acids. The production and secretion of mucus is determined by interactions between luminal aggressors (acid, pepsin, and Helicobacter pylori in the stomach and bile and bacteria in the small bowel) and the surface epithelium mediated by numerous factors, such as inflammatory cytokines and prostaglandins.

Mucus serves as a matrix for phospholipids that maintain gastrointestinal integrity. Like NSAIDs, phospholipids are amphiphilic molecules, with a hydrophilic polar head group and a hydrophobic tail region. The integrity of the mucus layer can be assessed by various methods. NSAIDs decreased the hydrophobicity in the gastroduodenal mucosa, an effect seen also after parenteral administration via the biliary excretion of the drug. The interaction between NSAIDs and phospholipids compromises the hydrophobic lining, which leads to mucosal exposure to luminal aggressors (acid and pepsin in the stomach and bacteria and bile in the small intestine).

The concept of a hydrophobic barrier attributed to phospholipids and the binding of NSAIDs to dipalmitoyl phosphatidylcholine (the dominant phospholipid in the gastrointestinal tract), in vitro and in vivo, led to a series of studies investigating the effect of orally coadministered phospholipids with NSAIDs, and other toxic compounds, with a view to diminishing their toxicity. Combining NSAIDs with the phospholipid phosphatidylcholine protects against NSAID-induced gastric and small bowel damage in short-term rodent studies. Lichtenberger et al demonstrated decreased gastric toxicity of the otherwise damaging combination of aspirin and a COX2-selective agent, if the aspirin was coadministered with a phospholipid.

These and other animal studies provided the platform for testing the safety of NSAIDs combined with phospholipids in humans. Volunteers were given aspirin or a combination of aspirin and phospholipid (650 mg aspirin/d for 3 days). The number of gastric erosions (assessed during endoscopy) was significantly lower in volunteers given aspirin and phospholipid (mean 2.8 ± 4.3) than aspirin alone (mean 8.8 ± 10.8); both drugs reduced mucosal prostaglandin content to the same extent. In a separate study, healthy volunteers given aspirin (325 mg/d for 7 days) or the same amount of aspirin combined with phosphatidylcholine had a significant decrease in gastric ulcers, from 17.6% in volunteers given aspirin to 5.1% in volunteers given aspirin with phosphatidylcholine. In a 6-week study of patients with osteoarthritis, the combination of ibuprofen and phosphatidylcholine was associated with significant improvements in Lanza gastroscopy scores compared to patients given ibuprofen (2400 mg) alone, but only in patients older than 55 years. These studies demonstrated greater gastric tolerability of combinations of aspirin and phospholipid.

Uncoupling Mitochondrial Oxidative Phosphorylation

Mitochondria are the main source of adenosine triphosphate (ATP) in cells. Mitochondrial ATP synthesis
takes place by integrated biochemical-physiological-physical processes (see Figure 3).

Whatever the cause of uncoupling, there is a cascade of detrimental downstream effects: water flows into the matrix causing characteristic and pathognomonic swelling of mitochondria. There is release of intra-mitochondrial Ca$^{2+}$ into cytoplasm with depletion of reduced glutathione, depletion of NAD(P)H$_2$, generation of superoxide anion (O_2^-), and release of pro-apoptogenic proteins. Free radicals accumulate within the mitochondria, setting up a vicious cycle, as this activates uncoupling proteins in the inner mitochondrial membrane. The uncoupling ultimately leads to depletion of cellular ATP levels, with loss of integrity of the intercellular junctions in the gastrointestinal tract (leading to increased mucosal permeability) and, ultimately, apoptosis and cell death.

Well before the understanding that NSAIDs inhibited the COX enzyme(s), it was evident that NSAIDs were uncouplers of mitochondrial oxidative phosphorylation. Adams et al. screened possible anti-inflammatory agents based on their uncoupling properties and several (such as ibuprofen, naproxen, and indomethacin) have been marketed on that basis. However, the idea of the uncoupling action of NSAIDs as a mechanism for their therapeutic actions became obsolete when the prostaglandin hypothesis gained momentum.

A few reports describe uncoupling of mitochondrial oxidative phosphorylation in the gastric mucosa after aspirin. The technique of selective sub-cellular marker enzyme analyses of small bowel mucosa after administration of NSAIDs in animals showed a significant change in the brush border marker enzymes, compatible with the interaction of NSAIDs with phospholipids and the mitochondrial marker enzymes. Electron microscopic changes of uncoupling were demonstrated in vivo after administration of NSAIDs to rats. The in vitro uncoupling of conventional acidic (carboxylic or enolic acids) NSAIDs relates to their logarithmic transformed acid dissociation constant (pK_a) values (Table 1). Drugs that are purported to be safer, such as paracetamol (nonacidic analgesic), nabumetone (a nonacidic NSAID pro-drug), and esterified nonacidic pro-NSAIDs (Figure 2), such as nitro-butyl flurbiprofen, are not uncouplers in vitro.

Micromolar to millimolar concentrations of NSAIDs have the ability to uncouple mitochondrial oxidative phosphorylation in vitro and in cell systems, but with lower potency than that of acidic NSAIDs. The uncoupling by NSAIDs was demonstrated by electron microscopy in the small bowel of mice given conventional acidic NSAIDs and similar

Figure 3. Mechanism of uncoupling actions of NSAIDs. High-energy intermediates feed into the respiratory chain; as energy is released, it is used to pump out hydrogen ions into the inter-mitochondrial membrane space. Normally, these hydrogen ions re-enter via a channel (ionopore) that is associated with ATP synthase and this promotes production of ATP. NSAIDs, however, partition into the inner mitochondrial membrane and create similar ionopores that allow hydrogen ions to enter the inner mitochondrial matrix, thereby bypassing the ATP synthase. The uncoupling (ie, uncoupling the hydrogen gradient from the ATPase activities) by NSAIDs leads to cell dysfunction from decreased levels of ATP and calcium release into the cytosol.
Table 1. Relationship Between Logarithmic Transformed Acid Dissociation Constant and Uncoupling of Mitochondrial Oxidative Phosphorylation

<table>
<thead>
<tr>
<th>Drug</th>
<th>pKₐ</th>
<th>Maximum uncoupling, %</th>
<th>Concentration required for maximum uncoupling, (\mu M/\text{mg protein} \pm \text{SEM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrosalicylic acid</td>
<td>2.3</td>
<td>205</td>
<td>2.70 ± 1.21</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>2.94</td>
<td>200</td>
<td>2.10 ± 1.23</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>3.5</td>
<td>200</td>
<td>1.6 ± 1.19</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>4.0</td>
<td>200</td>
<td>0.43 ± 0.22</td>
</tr>
<tr>
<td>Naproxen</td>
<td>4.15</td>
<td>210</td>
<td>0.61 ± 0.16</td>
</tr>
<tr>
<td>Flurbiprofen</td>
<td>4.22</td>
<td>265</td>
<td>0.51 ± 0.19</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>4.5</td>
<td>230</td>
<td>0.15 ± 0.12</td>
</tr>
<tr>
<td>6-MNA</td>
<td>5.0</td>
<td>180</td>
<td>0.46 ± 0.27</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>5.2</td>
<td>250</td>
<td>0.28 ± 0.18</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>5.94</td>
<td>220</td>
<td>0.38 ± 0.12</td>
</tr>
<tr>
<td>Piroxicam</td>
<td>6.3</td>
<td>215</td>
<td>0.20 ± 0.11</td>
</tr>
<tr>
<td>Azapropazone</td>
<td>6.3</td>
<td>210</td>
<td>0.02 ± 0.02</td>
</tr>
</tbody>
</table>

NOTE. Data derived from in vitro experiments with conventional NSAIDs. The maximum degree of respiration stimulation was similar among the NSAIDs tested, but the concentration needed for maximum stimulation differed. The more acidic the NSAID, the higher concentration required for maximum uncoupling (Spearman's correlation coefficient \(r = 0.87, P < .001; n = 12 \)). 6-MNA, 6-methoxy naphthalene acetic acid; pKₐ, logarithmic transformed acid dissociation constant.

Changes were also found in gastric biopsies from patients. Presumably these effects counteract the reduced microvascular blood flow\(^{84}\) consequent to NSAID-induced decreased prostaglandins.\(^{95}\) Proof-of-concept endoscopic studies of healthy volunteers found that nitric oxide donors and NSAIDs reduced gastroduodenal damage compared with NSAIDs,\(^{96,97}\) but the results of a longer-term clinical trial did not show statistically significant differences.\(^{98}\)

Another vascular effect of NSAIDs involves NSAID-induced expression of neutrophil adhesion molecules within the endothelium (common to most intestinal inflammatory conditions).\(^{27,29,93,99}\) Neutrophil accumulation could mechanically compromise microvascular blood flow. Nitric oxide and hydrogen sulfite are, like prostaglandins, inhibitors of leukocyte adhesion to the vascular endothelium.\(^{100}\)

However, vascular effects are probably not the primary or initiating event in NSAID-induced gastrointestinal damage. The effects on the vasculature cannot account for the selective localization of the macroscopic damage\(^{101-104}\) within the gastrointestinal tract or the mesenteric rather than the anti_mesenteric location of small bowel ulcers. The damage also differs macroscopically and microscopically from ischemic damage. The suggestion that neutrophil adhesion to the vessel wall (a COX2-mediated effect) is a primary event in the damage is difficult to reconcile with the fact that COX2 is not constitutively expressed in the gastrointestinal tract. Furthermore, neutrophil adhesion to the intestinal vessel wall does not automatically indicate damage, as neutrophils require a chemoattractant for activation-degranulation and, hence, damage.\(^{105,106}\)

Consequences of the Biochemical Effects of Nonsteroidal Anti-Inflammatory Drugs

Studies on COX-knockout mice have increased our understanding of the consequences of COX1 and COX2 deficiency. Absence or selective inhibition of COX1 (by the nonacidic COX1 inhibitor, SC-560) reduced levels of prostaglandins by 95% or more, which was not associated with increased intestinal permeability, inflammation, or ulcers.\(^{35,36}\) Neither was short-term selective deletion or inhibition of COX2.\(^{26,39}\) These findings should be considered alongside studies that assess the consequences of the “topical” effects and dissociated these from the consequences of COX inhibition. These studies were done by comparing key pathophysiological events in the damage, namely the topical effect (in vitro and in vivo uncoupling), prostaglandin levels, intestinal permeability, and inflammation after the use of selective drugs. This provides convincing
evidence that the topical effects (phospholipid–NSAID interaction and uncoupling) initiate gastrointestinal damage, but only with COX1 inhibition (in association with luminal aggressive factors) does this lead to mucosal erosions and ulcers. The compounds and their effects can be categorized as follows (Table 2):

- Selective uncouplers (dinitrophenol or R-flurbiprofen) can increase intestinal permeability associated with mild inflammation, but do not significantly alter mucosal prostaglandin levels, and do not cause mucosal ulceration.

- Uncouplers (conventional acidic NSAIDs) that inhibit COX enzymes are associated with increased intestinal permeability, inflammation, and ulcers.

- COX2-selective agents, such as celecoxib, do not uncouple oxidative phosphorylation (nimesulide with a pKₐ of 6.4, despite showing uncoupling activity, behaves like celecoxib—possibly because the uncoupling effect in vivo affects only a few mitochondria). These agents are not associated with increased intestinal permeability, inflammation, or ulcers.

Collectively these studies, together with studies of knockout mice, have provided compelling evidence that uncoupling of mitochondrial oxidative phosphorylation (along with the NSAID–phospholipid interaction) increases intestinal permeability and low-grade inflammation. Decreased mucosal prostaglandin production and the mucosal aggressors lead to more severe inflammatory

Figure 4. Ion trapping hypothesis for NSAIDs. The intracellular concentration of an NSAID in the stomach depends on the interaction between the logarithmic transformed acid dissociation constant (pKₐ) of the NSAID and luminal pH, as well as the rate of exit from the cell, which also depends on the pKₐ of the drug. Furthermore, lipid solubility, size, and metabolism of the NSAIDs and protein binding have roles in absorption-trapping. The more acidic the NSAID, the more it depends on a low gastric pH (an uncharged NSAID partitions through the surface cell membrane more effectively that a charged one) for entry into the epithelial cells; once inside, it is again charged (cytosol has a pH of 7.4) and it accumulates to reach a greater concentration than NSAIDs with pKₐs that are closer to neutral. Uncoupling potency appears to be directly proportional to the pKₐ of the NSAID. For example, after an oral dose of aspirin (pKₐ of 3.5), the drug does not enter the gastric mucosal cells when the gastric lumen is neutral (pH 7.0) because it is fully ionized. However, at a gastric pH of 2, for example, it is uncharged and easily partitions into the cells. Inside the cell, it is fully ionized because of the intercellular pH (7.4). It can therefore not pass into the circulation, and intracellular concentrations increase to the micromolar range required for uncoupling. A less-acidic NSAID with a pKₐ of 6.4 is less dependent on the luminal pKₐ for its entry into the gastric cells. However, because it is only partially ionized at the intracellular pH of 7.4, it is absorbed into the circulation and the intracellular concentrations may be only modestly high in comparison with aspirin. Neutralizing the gastric pH with drugs like proton pump inhibitors prevents short-term gastric damage of acidic NSAIDs more effectively than with less acidic NSAIDs. Because of the enormous surface area of the small intestine, the charge of the NSAID has only a minor role in its absorption, but ion trapping is still evident.
and ulcerative damage, perhaps via effects on the microcirculation.

The findings from COX2-knockout mice are more difficult to explain. These mice have normal mucosal levels of prostaglandin, but half have normal intestinal permeability and no inflammation or intestinal ulcers, and the other half develop small intestinal inflammation and ulcers or die because of ulcer perforation. Similar findings were seen with long-term administration of a selective COX2 inhibitor to wild-type mice. COX2 inhibition also leads to enteropathy in humans.11

Tissue Reaction and Role of Luminal Aggressors

The tissue reaction is characterized by inflammation and the presence of erosions and ulcers, and this appears to be driven by COX inhibition and the luminal aggressive factors. The luminal aggressors differ between the stomach (acid, pepsin, and *H pylori*) and small bowel (bile and commensal bacteria). The importance of gastric luminal aggressors is widely appreciated, but the same does not hold true for small bowel aggressors. Our review focuses on effects in the small bowel.

Role of Acid and Helicobacter pylori in Nonsteroidal Anti-Inflammatory Drug—Induced Gastropathy

The importance of gastric acid in the damage of NSAID-induced gastroduodenal damage in humans is amply demonstrated clinically by the reduced incidence of damage (short- and long-term) and serious ulcer outcomes when NSAIDs are coadministered with proton pump inhibitors107,108 or high-dose histamine 2-receptor inhibitors.109 In the context of the current pathogenic model, the macroscopic damage in the stomach is principally due to back diffusion of acid due to the impaired barrier function (brought about by the topical effects) induced by NSAIDs and amplified by the prostaglandin-dependent effects induced by NSAIDs. The frequent finding of chemical gastritis (reactive gastritis) in antral biopsies in patients on NSAIDs110 who do not have *H pylori* infection can be considered as the consequence of the topical effect of these drugs. In this context, the mucosal inflammatory reaction is weak compared to that seen in patients infected by *H pylori*.

The effects of *H pylori* infection in the pathogenesis of NSAID-associated gastric ulcers is controversial. *H pylori* does not seem to mediate development of short-term

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Drug</th>
<th>Uncoupling<sup>a</sup></th>
<th>Mucosal level of PGE2<sup>b</sup>, %</th>
<th>Permeability</th>
<th>Inflammation</th>
<th>Ulcers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somasundaram, 1997<sup>75</sup></td>
<td>Flurbiprofen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mahmud, 1998<sup>73</sup></td>
<td>DNP</td>
<td>+</td>
<td>+</td>
<td>+10</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Sigthorsson, 1998<sup>78</sup></td>
<td>Indomethacin</td>
<td>+</td>
<td>+</td>
<td>Reduction of 71–96</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Somasundaram, 2000<sup>154</sup></td>
<td>DNP</td>
<td>+</td>
<td>+</td>
<td>+12</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Tibble, 2000<sup>79</sup></td>
<td>Indomethacin</td>
<td>+</td>
<td>+</td>
<td>+89</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siggsthorsson, 2002<sup>36</sup></td>
<td>Celecoxib</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE. Approximately 15% of *Cox2^{−/−}* mice die from small bowel perforation; 50% of mice had normal intestinal permeability and no intestinal inflammation and 50% had small bowel ulcers.

Cox1^{−/−} , full-length *Cox1* gene in mice; *Cox1^{+/−}* , homozygous disruption of *Cox1* gene in mice; *Cox2^{−/−}* , homozygous disruption of *Cox2* gene in mice; DNP, dinitrophenol; PGE₂, prostaglandin E₂; SC560, selective nonacidic inhibitor of COX1.

^aUncoupling: 0, no uncoupling; +, 60%–70% of the mitochondria have uncoupling determined by electron microscopy; +b, 10%–30% of the mitochondria have uncoupling determined by electron microscopy.

^bMucosal levels PGE₂; percentages indicate increase (+) or decrease (−) from control level.

^cPermeability (measured by ⁵¹CrEDTA) and inflammation (fecal level of calprotectin): 0, unchanged; +, increased. Number of small bowel ulcers: 0, none; +, present.
Role of Bile in Nonsteroidal Anti-Inflammatory Drug–Induced Enteropathy

Bile contributes to intestinal and gastric damage caused by NSAIDs, but the biochemical mechanisms have not been established. The severity of NSAID enteropathy correlates to the amount of the drug excreted in bile and the extent of enterohepatic circulation. Bile duct ligation almost completely abolishes the small intestinal macroscopic damage after NSAIDs. Bile and the NSAIDs excreted in bile have complex roles in the pathogenesis of NSAID-induced small intestinal damage. Conventional NSAIDs cause small intestinal lesions in rats regardless of whether they are given orally or parenterally, but drugs such as aspirin and 6- methoxy naphthalene acetic acid (the active component of the nonacidic pro-NSAID nabumetone), which are not excreted in bile, do not when given parenterally. This indicates that the combination of NSAIDs and bile are more toxic than either alone. When certain bile acids (taurocholic acid, taurodeoxycholic acid, and glycocholic acid) were coadministered with indomethacin, the incidence and severity of gastric and small bowel damage was significantly increased in rats.

Bile collected from rats given indomethacin that was then infused into small intestinal loops of untreated rats reduced the hydrophobicity of the mucosa and caused ileal bleeding. These effects were abolished when phosphatidylincholine was added to the bile (from the indomethacin-treated rats) before instillation into the small bowel. Furthermore, certain bile acids caused identical damage and this was again reversed by addition of equimolar phosphatidylincholine. It was suggested that NSAIDs that enter the bile might damage the mucosa, not by a direct action, but by competing for the available protective phosphatidylincholine molecules. Increased amounts of unbound bile acids could therefore increase the indomethacin-induced (macroscopic) damage. Dial et al. similarly showed that bile was cytotoxic after indomethacin administration, but this effect was reversed when phosphatidylincholine was added to the bile-indomethacin mixture, again emphasizing the NSAID–phospholipid interaction. Furthermore, although primary and secondary bile acids have differential potential to cause damage to intestinal epithelial β cells, they also act as effector molecules that activate nuclear and G-protein–coupled receptors; collectively known as bile acid–activated receptors, these help maintain intestinal integrity.

Bile therefore appears to have an important role in the pathogenesis of small bowel damage. It has been shown to maintain and disrupt intestinal integrity. The choice of the bile acids used in a study is important because bile acids differ in their gastrointestinal tolerability. For example, taurochendoxycholic acid increases intestinal inflammation caused by indomethacin, whereas ursodeoxycholic acid reduces the damage and chenodeoxycholic acid may be neutral.

The effects of diclofenac on bile excretion have been investigated in considerable detail. Diclofenac is metabolized by the liver and the major biliary metabolite, diclofenac acyl glucuronide, is excreted by a specific hepatocanalicular conjugate export pump. Rats deficient in this transporter have normal bile composition and flow, but do not excrete diclofenac or its conjugate into bile. These rats had significantly less small bowel damage when given diclofenac orally or parenterally. Furthermore, bile containing diclofenac glucuronide increased small bowel damage in normal rats, and transferase-deficient rats over and above diclofenac and bile mixed together. Moreover, increasing the activity of glucuronosyltranferase, which increases glucuronidaton of diclofenac, increased small bowel damage. This indicates that biotransformation of diclofenac (acyl glucuronide or its oxidative metabolites) accounts for a significant part of its small bowel toxicity. Of note is the fact that most carboxylic acid–NSAIDs are metabolized to acyl-gluconorides in a similar fashion. Although these conjugates are reactive in their own right, they are also deconjugated by bacterial β-glucuronidase yielding aglycone, which is believed to be even more toxic. In an attempt to assess the importance of bacterial β-glucuronidase, researchers gave mice diclofenac (intraperitoneally), with or without pre-administration of a specific inhibitor of bacterial β-glucuronidase. The inhibitor reduced the number of small bowel erosions and ulcers significantly. Similar results were obtained when indomethacin and ketoprofen were used.

The interaction between biliary excretion of NSAIDs and intestinal bacterial deconjugation (which may be enhanced by concomitant treatment with proton pump inhibitors) possibly provides an explanation for the mid and distal small bowel location of NSAID enteropathy. However, it is important to remember that there are significant differences between species in the extent of enteric hepatic circulation of carboxylic NSAIDs (relatively low in humans).
although all seem to be associated with NSAID enteropathy to a similar extent in humans. In particular, there is very little, if any, biliary excretion of ibuprofen or its metabolites in humans, but this NSAID is still associated with enteropathy.

The practical implications from the experiments in animals are that coadministration of a bile-binding resin, such as cholestyramine, with NSAIDs might reduce or prevent some of the small bowel damage. Coadministration of a specific inhibitor of bacterial β-glucoronidase with NSAIDs might also prevent damage, but this has not yet been tested in clinical trials.

Role of Bacteria in Nonsteroidal Anti-Inflammatory Drug–Induced Enteropathy

It is difficult to dissociate the effect of intestinal bacteria on the metabolism of NSAID conjugates and formation of secondary bile acids to their more direct role to cause or increase inflammation in NSAID enteropathy. Nevertheless, germ-free rats and rats given antimicrobial agents do not develop small bowel ulcers when they are given indomethacin. Indomethacin-induced enteropathy in mice is associated with numerous alterations in the number and type of bacteria. The precise and specific bacterial alterations (eg, true increases, relative shifts) and effects are well documented, but probably not relevant to humans because their microbiomes differ substantially.

The mechanisms of interactions between the effects of NSAIDs on the microbiome and human cells could be mediated by lipopolysaccharide, a bacterial protein that binds to and activates Toll-like receptor 4. Toll-like receptor 4 signaling activates nuclear factor-κB, resulting in neutrophil recruitment. Neutrophils are important effector cells in the macroscopic damage due to NSAIDs, demonstrated by the findings that neutropenic mice do not develop macroscopic lesions in response to NSAIDs. These findings might offer therapeutic possibilities, such as inhibiting Toll-like receptor 4 or interfering with neutrophil functions.

The effects of intestinal bacteria on induction of enteropathy by NSAIDs have been studied in humans. A capsule enteroscopy study in volunteers showed that coadministration of the poorly absorbed antimicrobial rifaximin with NSAIDs prevented development of erosions and ulcers. In patients with established NSAID enteropathy, metronidazole reduced inflammation and bleeding but did not affect intestinal permeability.

An alternative approach is to reduce or prevent NSAID-induced small bowel damage with probiotics, although results from studies of probiotics have been inconsistent. In a clinical trial, the probiotic VSL-3 prevented the small bowel damage due to indomethacin (50 mg/d), assessed by fecal levels of calprotectin. In patients taking aspirin and a proton pump inhibitor who had iron-deficiency anemia, the probiotic Lactobacillus casei significantly reduced mucosal damage based on capsule endoscopy analysis compared with controls. However, many additional studies must be performed before specific probiotics can be recommended for prevention or treatment of NSAID enteropathy in humans.

Future Directions

Prevention and treatment of the adverse events of NSAIDs on the gastrointestinal tract require knowledge of mechanisms of pathogenesis of the lesions. The complexities of the pathways to this damage have been evident for a long time, but have not received much attention, presumably because the effects of inhibiting COX enzymes offer a simple and logical explanation for the damage. This hypothesis led to development of the COX2-selective agents with increased gastrointestinal safety. However, studies of knockout mice (especially COX1- and COX2-knockout mice) and development of drugs with highly specific actions increased our understanding of the effects of NSAIDs. We now recognize that inhibition of COX1 or COX2 does not solely account for the gastrointestinal damage induced by NSAIDs. NSAIDs have topical effects that damage intestinal cells by disrupting membrane and mucus phospholipids and uncoupling of mitochondrial oxidative phosphorylation.

NSAIDs increase intestinal permeability in patients, leading to low-grade intestinal inflammation. Disruption of the intestinal barrier is associated with many human small bowel diseases that are distinctively different from the damage seen with NSAIDs. NSAIDs also have microvascular effects that aggravate inflammation and lead to macroscopic damage, such as erosions and ulcers in the stomach and the small bowel. It should be noted that these observations relate to the pathogenesis of damage, but not necessarily the clinical adverse effects. Clinically serious gastric and small bowel ulcer events of perforation and bleeding involve separate clinical and comorbidity factors.

Our model emphasizes the multistage complexities of the pathogenesis and numerous interactive and ongoing synergistic factors that intensify or modulate the damage. For example, the increased intestinal permeability that is brought about by the topical effects of NSAIDs is intensified because of the inflammatory response (to luminal aggressors) and the microvascular effects of COX inhibition. Conventional NSAIDs cause maximum intestinal damage, whereas the various combinations of the biochemical actions observed experimentally, such as selective inhibition or absence of COX1 and COX2 (without the topical effect), topical effect combined with COX1 absence or inhibition (without COX2 involvement), topical effect combined with COX2 absence or inhibition (without COX1 involvement) can increase tolerability, but do not fully prevent intestinal damage.

In patients, strategies to alter or minimize a single biochemical effect of NSAIDs, such as by coadministration of a phospholipid, esterification of NSAIDs (with or without the addition of nitric oxide or hydrogen sulfite moieties), or use of selective COX2 inhibitors (which spare COX1 and reduce the topical effect), does not remove their toxicity. Altering the physical and chemical properties of NSAIDs to alter their efficacy or tolerability is impractical because the
same physicochemical properties of NSAIDs mediate their topical effects and effects on COX enzymes. Strategies to interfere with their non-biochemical actions, such as the luminal aggressors, could be a more realistic approach for reducing NSAID-induced small bowel damage in patients. By analogy, inhibition of gastric acid secretion prevents and heals NSAID-associated ulcers.

The current model is largely based on findings from rodents, which have many differences from humans in physiology, biochemistry, immunology, and, not least, the gastrointestinal tract microbiome. Furthermore, in these studies, NSAIDs were administered to the animals at doses that are an order of magnitude higher than doses taken by patients, and the compounds used to solubilize NSAIDs that are given to animals are toxic. Extrapolation of data from animal studies to humans therefore requires great care. However, some aspects of the damage show remarkable similarities, such as the increase in intestinal permeability seen with NSAIDs, the localization of NSAID enteropathy to the mid to distal small bowel, similar responses to some therapeutic interventions. Animal experiments are a convenient way to explore pathogenic processes, but findings must be confirmed in human studies.

Many view the clinical importance of NSAID-induced gastropathy to the exclusion of NSAID-induced enteropathy and, moreover, there have been very few attempts to minimize the incidence or clinical impact of NSAID-induced enteropathy. This may be because of selective funding for research into the treatment of NSAID-induced gastropathy, but also because NSAID enteropathy has been perceived as being asymptomatic and benign. However, most patients with NSAID-induced enteropathy bleed from the small bowel, which frequently leads to an iron-deficiency anemia, occasional hypoalbuminemia, diaphragm disease, and even death from intestinal perforation with peritonitis. Increasing understanding of the mechanisms of NSAID-induced damage to the small bowel should stimulate further research and reduce these clinical effects.

References

Pathogenesis of NSAID-Induced GI Damage

144. Wallace JL, Kennan CM, Granger DN. Gastric ulceration induced by nonsteroidal antiinflammatory drugs is a neutrophil dependent process. Am J Physiol 1990;259:G462–G467.

147. Montalto M, Gallo A, Curigliano V, et al. Clinical trial: the effects of a probiotic mixture on non-steroidal anti-

Received March 14, 2017. Accepted October 31, 2017.

Reprint requests
Address requests for reprints to: Ingvar Bjarnason, MD, MSc, FRCPath, FRCP, DSc, Department of Gastroenterology, King’s College Hospital, Denmark Hill, London E5 9RS, United Kingdom. e-mail: ingvar.bjarnason@mac.com; ingvar.bjarnason@nhs.net; fax: (4)2032996474.

Acknowledgments
Authors contributions: The study concept originated with IB. EH and MO wrote the first draft and carried out the literature search while IB supervised them and did most of the modifications before OS, KR, and AL contributed their expertise, as well as general comments. All authors contributed to the interpretation of data.

Writing assistance: Professor Brian Callingham, Department of Pharmacy, Queens College, University of Cambridge read and commented on the final version of the manuscript.

Conflicts of interest
Drs Bjarnason, Scarpignato, Rainsford, and Lanas have received lecture fees, travel support, research grants and sat on advisory panels of a number of pharmaceutical companies, some of which are involved with NSAIDs or drugs to prevent or heal their adverse effects on the intestinal tract. The remaining authors disclose no conflicts.

1. Mechanisms of NSAID-induced gastroduodenal mucosa damage include
 a. Increased acid production
 b. Uncoupling of mitochondrial phosphorylation
 c. Increased blood flow to the mucosa
 d. Increased production of phospholipids mediated by COX 1 inhibition

True or False

2. Small bowel injury caused by NSAIDs correlates with the amount of the drug excreted in bile

3. NSAID-induced GI mucosal damage is mediated solely by inhibition of COX 1 and/or 2

4. In patients with H. pylori pan-gastritis, the presence of H. pylori infection reduces the risk of NSAID-induced gastric injury

5. Selective COX-2 inhibitors do not cause mitochondrial uncoupling, resulting in reduced intestinal permeability, inflammation and ulcers

6. Reducing small bowel bacterial populations is associated with decreased NSAID associated mucosal injury

7. The role of bacteria (and bile salt deconjugation) in NSAID-induced small bowel damage may explain the mid to distal location of NSAID damage in the small bowel

8. NSAIDs that are not excreted in bile do not cause small bowel damage

9. NSAID-induced small bowel mucosal damage require the action of bile and commensal bacteria in addition to the COX inhibition to cause damage

10. H. pylori infection increases the risk of clinically-significant gastric lesions after short-term NSAID use

11. PPI use could in theory aggravate small bowel NSAID-induced injury by promoting bacterial overgrowth

12. Selective COX-2 inhibitors reduce the topical damage of NSAID on gastroduodenal mucosa but do not eliminate the systemic effects