Hepatorenal syndrome (HRS) continues to be one of the major complications of decompensated cirrhosis, leading to death in the absence of liver transplantation. Challenges in precisely evaluating renal function in the patient with cirrhosis remain because of the limitations of serum creatinine (Cr) alone in estimating glomerular filtration rate (GFR); current GFR estimating models appear to underestimate renal dysfunction. Newer models incorporating renal biomarkers, such as the Cr-Cystatin C GFR Equation for Cirrhosis appear to estimate measured GFR more accurately. A major change in the diagnostic criteria for HRS based on dynamic serial changes in serum Cr that regard HRS type 1 as a special form of acute kidney injury promises the possibility of earlier identification of renal dysfunction in patients with cirrhosis. The diagnostic criteria of HRS still include the exclusion of other causes of kidney injury. Renal biomarkers have been disappointing in assisting with the differentiation of HRS from prerenal azotemia and other kidney disorders. Serum metabolomic profiling may be a more powerful tool to assess renal dysfunction, although the practical clinical significance of this remains unclear. As a result of the difficulties of assessing renal function in cirrhosis and the varying HRS diagnostic criteria and the rigor with which they are applied, the precise incidence and prevalence of HRS is unknown, but it is likely that HRS occurs more commonly than expected. The pathophysiology of HRS is rooted firmly in the setting of progressive reduction in renal blood flow as a result of portal hypertension and splanchnic vasodilation. Progressive marked renal cortical ischemia in patients with cirrhosis parallels the evolution of diuretic-sensitive ascites to diuretic-refractory ascites and HRS, a recognized continuum of renal dysfunction in cirrhosis. Alterations in nitrous oxide production, both increased and decreased, may play a major role in the pathophysiology of this evolution. The inflammatory cascade, triggered by bacterial translocation and endotoxemia, increasingly recognized as important in the manifestation of acute-on-chronic liver failure, also may play a significant role in the pathophysiology of HRS. The mainstay of treatment remains vasopressor therapy with albumin in an attempt to reverse splanchnic vasodilation and improve renal blood flow. Several meta-analyses have confirmed the value of vasopressors, chiefly terlipressin and noradrenaline, in improving renal function and reversing HRS type 1. Other interventions such as renal replacement therapy, transjugular intrahepatic portosystemic shunt, and artificial liver support systems have a very limited role in improving outcomes in HRS. Liver transplantation remains the definitive treatment for HRS. The frequency of simultaneous liver–kidney transplantation has increased dramatically in the Model for End-stage Liver Disease era, with changes in organ allocation policies. This has resulted in a more urgent need to predict native kidney recovery from HRS after liver transplantation alone, to avoid unnecessary simultaneous liver–kidney transplantation.

Keywords: Hepatorenal Syndrome; Cirrhosis; Terlipressin; Meta-Analysis; Cystatin C.
Diagnosis of Renal Dysfunction in Patients With Cirrhosis

It is well established that serum Cr is not an accurate marker of renal dysfunction in cirrhosis.4–8 Multiple factors contribute to lower serum Cr concentrations in cirrhosis, reducing the sensitivity of serum Cr for the detection of renal dysfunction and resulting in an overestimation of renal function, misclassification of kidney disease stage, and delays in the management and treatment of kidney disease in patients with cirrhosis.4–8 The production of creatine, the precursor of serum Cr, is impaired in hepatic dysfunction.6,7 Patients with decompensated cirrhosis have reduced muscle mass and increased tubular secretion of Cr.6–8 Collectively, all of these factors reduce serum Cr concentration, making it an insufficiently accurate marker of renal function in cirrhosis.4–8 Assessing renal function by measuring GFR (eg, inulin clearance, iothalamate clearance) is the most reliable and accurate method, but it is expensive, time consuming, and labor intensive. Additionally, some of the exogenous markers used in GFR measurement are radioactive. Directly measuring Cr clearance is an alternative method to measuring GFR. However, the Cr clearance method is time-intensive, prone to logistical errors, and impractical in critically ill patients with end-stage liver disease and low or no urine output. In subjects with cirrhosis, Cr clearance has been shown to have poor accuracy in predicting measured GFR.9 Hyperbilirubinemia and hemolysis in patients with cirrhosis may produce spuriously low levels of Cr.10 Serum Cr level varies with sex and age, distinct from changes in GFR.8 Even after controlling for age, race, weight, height, and measured GFR, female sex was shown to be an independent predictor of serum Cr in patients with cirrhosis.11

Table 1 shows the original development12–22 and validation studies9,15,23–26 of conventional Cr clearance and GFR-estimating and new GFR-estimating equations in patients with cirrhosis. Cr-based GFR-estimating equations have major limitations in patients with cirrhosis.9,25,26 In addition, the majority of Cr-based GFR and Cr clearance–estimating equations used in clinical practice were derived either from patients with CKD or patients without cirrhosis.12,17–20 A Cr-based GFR-estimating equation derived from 469 patients with cirrhosis, validated both internally and externally in 174 and 82 patients with cirrhosis, respectively, recently was described.11 Although this Cr-based GFR model suggested improved performance in predicting measured GFR compared with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) Cr and Modification of Diet In Renal Disease (MDRD) equations,15 prospective independent assessments of differences in accuracy between GFR estimates by the new equation and MDRD and CKD-EPI Cr equations are not yet available. Blood urea and degree of ascites (moderate vs severe) are 2 of the parameters used in this new model.15 Increased blood urea levels in the setting of gastrointestinal bleeding and the subjective nature of assessing the degree of ascites among clinicians may limit the value of this model15 and further validation is required.

Serum Cr is used not only in determining renal function and mortality in patients with cirrhosis on the liver transplant waiting list, but also in making decisions on whether to proceed with liver transplant alone (LTA) or simultaneous liver–kidney transplantation (SLKT) for patients with severe renal dysfunction in the setting of HRS. According to SLKT guidelines, GFR is estimated using the MDRD-6 equation, a Cr-based formula.27 However, the MDRD-6 formula was shown to underestimate measured GFR when the measured GFR was greater than 30 mL/min/1.73 m² in patients with cirrhosis, and therefore potentially can lead to listing a patient for an unnecessary SLKT.25 Conversely, the overestimation of measured GFR can result in increased mortality after liver transplantation owing to severe renal dysfunction underscoring the need for a practical accurate assessment of GFR.25,28

The recent development of GFR equations supplementing serum Cr with renal biomarker cystatin C measurements appear promising. In contrast to serum Cr, cystatin C is independent of hepatic function,29,30 gender-neutral,11 and sensitive to GFR reductions in the range in which GFR equations using serum Cr alone may not detect GFR reductions.29 Studies have shown that Cr–cystatin C combined GFR equations were more accurate compared with Cr-based GFR equations in estimating measured GFR in patients with cirrhosis.9,21,23 The advantage of using serum Cr and cystatin C in combination is that cystatin C is a Cr-blind range marker14 and increases the performance of the GFR equation.29 The new Cr–cystatin C GFR Equation for Cirrhosis estimates GFR with greater accuracy than the CKD-EPI cystatin C (2012)14 and Cr–cystatin C (2012)14 equations in patients with cirrhosis and diuretic-refractory ascites.21 The Cr–Cystatin C equation for cirrhosis was validated recently in an independent cohort of 129 patients with decompensated cirrhosis in Europe.23 Compared with the CKD-EPI cystatin C (2012)14 and Cr–cystatin C (2012)14 equations, the Cr–Cystatin C GFR Equation for Cirrhosis21 had significantly higher accuracy and showed the best performance to discriminate patients with cirrhosis who had a GFR less than 60 mL/min with an area under the concentration-time curve of 0.91 compared with MDRD-4,17–19 CKD-EPI Cr (2009),20 and GFR equation developed by Cholongitas et al.12 These developments may become relevant to establishing the diagnosis of HRS more precisely and selecting the most appropriate therapy and its timing, be it vasopressors, LTA, or SLKT.

New Diagnosis of Hepatorenal Syndrome in Patients With Cirrhosis

One of the most important developments in HRS is the move away from a diagnosis based on a single level
<table>
<thead>
<tr>
<th>GFR and Cr clearance estimating equations</th>
<th>Original GFR equation development studies</th>
<th>Renal marker used</th>
<th>Population from which the GFR equation was derived</th>
<th>Most recent external validation studies in patients with cirrhosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr equations</td>
<td>Cockcroft–Gault(^{12})</td>
<td>Cr</td>
<td>Patients from Queen Mary Veterans’ Hospital</td>
<td>Francoz et al(^{25}) (2010), Mindikoglu et al(^{9}) (2014)</td>
</tr>
<tr>
<td>Cystatin C equations</td>
<td>Larsson et al(^{16}) (2004), Hoek et al(^{13}) (2003)</td>
<td>Cystatin C</td>
<td>University Hospital MAS</td>
<td>Mindikoglu et al(^{9}) (2014), Cholongitas et al(^{23}) (2017)</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; CKD-Epi, Chronic Kidney Disease Epidemiology Collaboration; Cr, serum creatinine; GFR, glomerular filtration rate; MDRD, modification of diet in renal disease.
of serum Cr to a diagnosis based on dynamic serial changes in serum Cr level such as the recently revised recommendations of the International Ascites Club (IAC) for hepatorenal disorders in cirrhosis. This change has been stimulated by a perceived need to establish more precisely an early diagnosis of HRS, allowing the start of earlier therapy. The key difference between the prior criteria and the newly proposed classification system to diagnose HRS is that the diagnosis of HRS is not based on an increase in serum Cr from a single serum Cr value to a fixed value of serum Cr (ie, 2.5 mg/dL for HRS type 1), but rather on an amount of increase in serum Cr from baseline serum Cr value with the Acute Kidney Injury Network, Kidney Disease Improving Outcomes clinical practice guidelines for AKI, Acute Dialysis Quality Initiative (ADQI), and the IAC classification systems and revised recommendations of the IAC. In this new classification system, the diagnosis of AKI precedes the diagnosis of HRS (Figure 1A). Once AKI is diagnosed, the stage of AKI should be identified (Figure 1B) because progression to subsequent AKI stages has higher mortality rates in patients with cirrhosis. Because the diagnosis of HRS is one of exclusion, adjudication of the etiology of AKI should begin by discontinuation of diuretics, vasoconstrictors, and nephrotoxic drugs, treatment of all etiologies that may be the culprit of volume depletion, and administration of intravenous albumin (1 g/kg/d for 2 days; maximum 100 g/d) (Figure 1C). Patients responding to volume-replacement therapy can be considered to have prerenal azotemia. Patients who do not responding to volume-replacement therapy should be evaluated for etiologies including HRS, intrarenal AKI (eg, acute tubular necrosis [ATN], glomerulonephritis, interstitial nephritis), and postrenal (eg, urinary obstruction) AKI. The presence of granular casts in urine sediment and urine osmolality equal to plasma osmolality are suggestive findings of ATN. Proteinuria and microhematuria should warrant further investigation for an intrarenal cause of AKI. Renal ultrasound should be obtained to assess structural changes in the kidneys and rule out urinary obstruction. Increased renal resistive indices (RIs) in hilar, medullary, and cortical areas on duplex Doppler ultrasonography and disappearance of the gap between interlobar and cortical RIs can be an indicator of reduction in RBF and the possibility of HRS type 1 or HRS type 2, depending on how quickly renal dysfunction develops (Figure 2).

HRS can be superimposed on prerenal azotemia or CKD. Similarly, HRS can progress to ATN if renal vasoconstriction is prolonged or severe. Two or more AKI types can occur simultaneously in a patient with cirrhosis, making the differentiation challenging. These possibilities should be taken into account when evaluating patients with HRS. Although several new blood and urinary AKI markers have been identified recently, no specific biomarker(s) is available to diagnose HRS superimposed on other AKI etiologies (eg, prerenal azotemia, ATN). It remains to be seen whether application of this new classification of HRS to treatment selection and earlier treatment will improve outcomes.

Acute Kidney Injury and Renal Biomarkers in Patients With Cirrhosis

In recent years, several urinary AKI markers that played a role in trying to determine the etiology of AKI in patients with cirrhosis were reported. Fagundes et al reported that urinary neutrophil gelatinase-associated lipocalin (NGAL) levels were increased significantly in patients with cirrhosis and ATN compared with patients who had prerenal azotemia and HRS. They reported that the cut-off value of 194 μg/g Cr for urinary NGAL differentiated HRS from ATN with 91% and 82% sensitivity and specificity, respectively. A major limitation of urinary NGAL is that it increases in patients with a urinary tract infection and can show false-positive results. Belcher et al conducted a multicenter prospective study in inpatients with cirrhosis and AKI and showed that a panel of urinary AKI biomarkers including NGAL, interleukin (IL)18, kidney injury molecule-1, liver-type fatty acid binding protein, and albumin differentiated patients with ATN from those with prerenal azotemia or HRS. Although of some value, the clinician often is faced with the more difficult challenge of differentiating between volume contraction and HRS. Several renal blood biomarkers have been evaluated rigorously in patients with cirrhosis to estimate GFR, renal plasma flow, and renal RIs. The results of a study conducted in patients with cirrhosis showed that the mean serum concentrations of Cr, cystatin C, β-trace protein, β-2 microglobulin, and dimethylarginines including asymmetric and symmetric dimethylarginine (SDMA) were increased significantly in patients with diuretic-refractory ascites compared with patients with no ascites and diuretic-sensitive ascites. In this study, serum Cr and cystatin C significantly predicted measured GFR in patients with cirrhosis. GFR markers other than Cr and cystatin C including β-trace protein, β-2 microglobulin, and dimethylarginines also were tested in combinations. However, the additional proportion of variance explained by adding these GFR markers to the Cr and cystatin C model was not statistically or clinically significant. A pilot study that evaluated altered renal hemodynamics in patients with cirrhosis showed that although cystatin C (R² = 0.43; P = 0.038) and β-2 microglobulin (R² = 0.46; P = 0.030) performed better compared with serum Cr in estimating renal plasma flow (RPF) measured by para-aminohippurate clearance, β-trace protein (R² = 0.52; P = 0.018) and SDMA (R² = 0.44; P = 0.038) performed better in estimating renal arcuate artery RI, a surrogate marker for cortical blood flow. Serum metabolomic profiling may be a powerful noninvasive tool to discover renal biomarkers of renal dysfunction in patients with cirrhosis, allowing early
diagnosis of HRS, prediction of response to HRS treatment, and native kidney recovery after liver transplantation, an important goal to avoid unnecessary SLKT.45 Nontargeted global plasma metabolomic profiling in 103 patients with cirrhosis identified a robust metabolomic signature of hepatic and renal dysfunction consisting of 17 metabolites that were associated significantly with pyrimidine, nicotinate/nicotinamide, purine, inositol phosphate, DNA repair, glycolysis, IL2/signal transducer and activator of transcription 5 signaling, and lipid metabolism pathways.45 The 10 most inducible metabolites included 4-acetamidobutanoate, trans-aconitate, cytidine, myo-inositol, N4-acetylcystidine, N6-carbamoylthreonyladenosine, erythronate, N-acetylserine, pseudouridine, and N2, N2-dimethylguanosine were the 10 most increased metabolites when subjects with high severity of hepatorenal dysfunction were compared to those with low severity hepatorenal dysfunction.45 The practical clinical significance of this metabolomics signature remains unclear, but it appears further study in this area is warranted.

As suggested earlier, gender differences exist for serum Cr levels. The Cr production rate was reported to be 10% lower in healthy females compared with healthy males of the same age and weight.46 The Model for End-Stage Liver Disease (MELD) score, which is used to identify patients with cirrhosis with the greatest need for liver transplant, consists of 4 laboratory parameters, one of which is serum Cr level.47–49 A lower serum Cr level in female patients with cirrhosis results in lower MELD scores and, in turn, reduced access to liver transplantation and significantly higher mortality on the liver transplant waiting list compared with men with comparable hepatic dysfunction.5,50 A study conducted in 103 patients with cirrhosis showed that the mean Cr production rate estimated using the Mitch and Walser51 formula (14.50 ± 1.36 vs 17.12 ± 1.90 mg/kg/d, respectively; \(P < .0001 \)) and mean serum Cr level (0.82 vs 0.97 mg/dL, respectively; \(P = .023 \)) were significantly lower in women than in men.11 Although the estimated Cr production rate and mean serum Cr level were lower in women, the mean measured GFR was not significantly different between women and men, indicating that the MELD-Na score underestimated renal dysfunction in women.11 There was no significant difference in the mean cystatin C, \(\beta \)-trace protein, \(\beta \)-2 microglobulin, and SDMA levels between men and women.11 Female sex remained an independent predictor of serum Cr (\(P = .003 \)) even after controlling for measured GFR, age, race, height, and weight. However, female sex was not a predictor of other GFR markers including cystatin C (\(P = .169 \)), \(\beta \)-trace protein (\(P = .463 \)), \(\beta \)-2 microglobulin (\(P = .161 \)), and SDMA (\(P = .184 \)).11 Given the results of this study, the revision of the MELD score using either a more accurate estimate of GFR (eg, new Cr–cystatin C GFR equation for cirrhosis21) or gender-neutral biomarkers of renal function alternative to serum Cr (eg, cystatin C) may eliminate this disadvantage for women on the liver transplant waiting list. Further
studies are warranted to eliminate gender disparity on the liver transplant waiting list.

Prevalence of Acute Kidney Injury and Hepatorenal Syndrome in Patients With Cirrhosis

The prevalence of AKI and HRS in cirrhosis in published studies shows significant variations owing to the definition of HRS used and how rigidly inclusion/exclusion criteria were applied. Reflecting the difficulty in the application of even generally accepted diagnostic criteria, Salerno et al. reported that they presumed the diagnosis of HRS in 36% of patients because they did not meet all the consensus diagnostic criteria prevailing at that time. In a prospective study conducted by Planas et al. among 263 patients with decompensated cirrhosis and moderate to severe ascites, 8% of patients developed HRS (3% developed type 1 and 5% developed type 2 HRS) during a mean follow-up period of 41 months. According to a review in which the number of patients with AKI was reported by adding multiple references, 19% of hospitalized patients with cirrhosis had AKI/acute renal failure, and among those with AKI, 42% of patients had AKI defined based on risk, injury, failure, loss, and end-stage renal disease criteria. Among these 283 patients with cirrhosis, 12% and 11% were diagnosed with HRS and ATN, respectively. In a prospective study conducted among 90 outpatients with cirrhosis and ascites, 54% of patients developed AKI diagnosed by criteria proposed by the ADQI and the IAC, and had 82 episodes of AKI during an average of 14 months of follow-up evaluation. Huelin et al. found that based on the new AKI criteria, more than half of the patients (290 of 547 patients) with cirrhosis admitted to the hospital had AKI. Not surprisingly, HRS and ATN were more common in patients with stages 2 and 3 AKI compared with patients with stage 1 AKI. As expected, the prevalence of HRS in patients with cirrhosis varied most dramatically based on the diagnostic criteria used and the rigor with which it was applied. At this time, a large cohort study is needed to determine the precise incidence and prevalence of HRS based on the new criteria proposed by the IAC.

Pathophysiology of Hepatorenal Syndrome

Reduction in Cortical Renal Blood Flow Is a Landmark Feature of Hepatorenal Syndrome

The hallmark of HRS is renal dysfunction secondary to renal vasoconstriction in patients with cirrhosis and
portal hypertension. Rivolta et al. assessed RBF by measuring renal RIs using Doppler ultrasonography. The results of this study showed that in patients with cirrhosis without ascites and diuretic-sensitive ascites, renal RIs showed a gradual decrease starting from the main renal artery, followed by interlobar arteries toward cortical arteries. In contrast, in patients with cirrhosis and diuretic-refractory ascites, this gradual decrease disappeared because renal RIs were increased almost equally, not only in the main renal and interlobar arteries but also in the cortical arteries. These findings suggest that reduction in RBF in cirrhosis progresses from the renal hilum toward the renal cortex with the severity of ascites, the latter being a surrogate marker for portal hypertension. Eventually, the gap between interlobar and cortical artery RIs disappear in patients with diuretic-refractory ascites. Similar findings were reported when renal RIs in the renal arcuate arteries were measured to evaluate the cortical RBF in patients with cirrhosis. The results of this study showed that patients with cirrhosis and diuretic-refractory ascites had a lower filtration fraction and a higher kidney arcuate artery resistive index compared with patients without ascites. This negative correlation between kidney arcuate artery RI and filtration fraction suggests that the inability of kidneys to increase filtration fraction was associated with reductions in renal cortical blood flow in advanced cirrhosis. Kew et al. showed that there was a significant correlation between cortical blood flow and Cr clearance in patients with cirrhosis. Similarly, Epstein et al. showed that in HRS type 1, there was severe vasoconstriction involving cortical renal arteries. Although patients without ascites and with diuretic-sensitive ascites preserve cortical renal blood, patients with diuretic-refractory ascites and HRS have a substantial reduction in RBF in renal cortical arterial flow. Marked cortical ischemia is considered to be a landmark feature of cirrhosis and diuretic-refractory ascites and, in particular, HRS.

Nitric Oxide Dysfunction

Patients with compensated cirrhosis without a baseline CKD may have normal GFR despite a mild to moderate reduction in RPF for prolonged periods. This is owing to an increased filtration fraction (normal GFR = [increased filtration fraction] × [reduced RPF]) compensating for mild to moderate reductions in RPP. The filtration fraction is increased by vasoconstrictor effect of angiotensin II on efferent renal arterioles and vasodilator effect of prostaglandins on afferent renal arterioles; thereby preserving adequate pressure in the glomeruli to maintain GFR despite a mild to moderate reduction in renal blood flow. In advanced stages of cirrhosis, however, GFR decreases substantially because the more severe reduction in RPF cannot be compensated by increases in filtration fraction. Drugs (eg, angiotensin-converting enzyme inhibitors, angiotensin II–receptor blockers, nonsteroidal anti-inflammatory drugs) that blunt this compensatory mechanism of kidneys for reduced RBF can reduce GFR further, and thereby result in AKI. Several studies have suggested that RBF may be reduced at earlier stages of cirrhosis with a progressive reduction in RBF and GFR associated with progressive portal hypertension manifested by increasing severity of ascites.

In cirrhosis, a reduction in RBF is attributed to either excessive or insufficient production of nitric oxide. Excessive NO production results in splanchnic vasodilation, reduced effective arterial blood volume, activation of the renin-angiotensin-aldosterone system, sympathetic nervous system, renal vasoconstriction, and thereby reduced RBF. Although excessive NO production leads to reduced RBF, several investigators have shown that reduced NO production also causes reduced RBF, and increased levels of dimethylarginines including SDMA and asymmetric dimethylarginine (ADMA) are associated with reduced NO production. NO synthesis from L-arginine is catalyzyed by NO synthase (NOS). ADMA, an endogenous inhibitor of NOS is hydrolyzed by dimethylarginine dimethylaminohydrolase. Because dimethylarginine dimethylaminohydrolase activity requires intact liver function, ADMA levels are increased in advanced liver disease. Another study has shown that dimethylarginines including SDMA and ADMA were independent predictors of measured GFR in patients with cirrhosis. HRS is clearly a dynamic process, and in the presence of severe, or prolonged, reduction in RBF resulting from altered NO production, may be the mechanism by which HRS can progress to ischemic ATN.

The Association of Hepatorenal Syndrome With Infections, Systemic Inflammatory Response Syndrome, Bile Cast Nephropathy, and Proximal Tubulopathy

Despite currently available treatments, HRS is associated with high mortality. Multiple factors including infections, bile cast nephropathy, proximal tubulopathy, and progression of HRS to ATN can be associated with poor outcomes and nonresponse to HRS treatment in patients with cirrhosis. HRS often is precipitated by infections. Barreto et al. showed that nearly 70% of patients with infection-related HRS could not recover from HRS even after adequate treatment of infection. It was noted, however, that in that study, patients received therapy for HRS...
(terlipressin and albumin) only after the infection was treated; it is possible that earlier simultaneous treatment of infection and HRS may be associated with improved outcomes.77 Age, presence of a nosocomial infection, and serum bilirubin level at the time of diagnosis were independent predictors of irreversibility of HRS type 1.77 Similarly, Nazar et al79 showed that the proportion of patients with HRS type 1 and serum bilirubin levels of 10 mg/dL or greater who responded to terlipressin and albumin treatment was significantly lower compared with patients whose serum bilirubin levels were lower than 10 mg/dL (13% vs 67%; \(P = .001 \)). The irreversibility of HRS in patients with cirrhosis and markedly increased bilirubin levels may be explained by bile cast nephropathy and proximal tubulopathy superimposed on HRS.80–82 van Slambrouck et al81 reported that 85% of patients with HRS had bile cast nephropathy that was diagnosed by microscopic demonstration of intratubular bile casts positively stained by Hall histochemical staining. Besides bile cast nephropathy superimposed on HRS, patients with cirrhosis and jaundice can develop proximal tubulopathy mimicking Fanconi syndrome and present with low serum uric acid and phosphate and increased bile acid levels.81–83 Although serum bilirubin commonly has been shown to be an independent predictor of response to therapy, this has not been observed uniformly,84 and the precise role of bile cast nephropathy in HRS remains unclear.

HRS also can be associated with systemic inflammatory response syndrome (SIRS) with or without infection.78,85 A multicenter prospective study showed that SIRS was an independent predictor of mortality in patients with cirrhosis and acute functional renal failure.78 Results of this study showed that that 59% of patients with cirrhosis and HRS developed SIRS; 50% of those who developed HRS associated with SIRS had an infection.76 A recent retrospective study conducted among 58 patients with HRS associated with SIRS showed that the proportion of patients who had HRS reversal was significantly higher in the terlipressin plus albumin group compared with those who were treated with albumin and placebo.85 No significant improvement in renal function was observed when terlipressin and albumin was administered to patients with HRS without SIRS.85 At first glance, this study outcome may seem implausible; terlipressin, via its splanchnic and systemic vasoconstrictive effect, would be expected to improve renal function better in HRS patients without SIRS compared with those with SIRS.85 However, the observed outcome may be attributed to the indirect anti-inflammatory effect of terlipressin in the presence of SIRS.85 Terlipressin, or other splanchnic vasoconstrictors, by decreasing portal venous pressure, may prevent gut bacterial translocation, thereby decreasing the synthesis of proinflammatory cytokines (ie, IL6, tumor necrosis factor-\(\alpha \)) and endotoxins.85 These findings are in line with studies that have shown beneficial effect of pentoxifylline, a tumor necrosis factor-\(\alpha \) synthesis inhibitor, in reversing HRS in patients with severe alcoholic hepatitis86 and preventing HRS87 and renal insufficiency88 in patients with cirrhosis.88 Similar to other manifestations of acute-on-chronic liver failure, proinflammatory mechanisms may play a significant role in the pathogenesis of HRS.

Treatment of Hepatorenal Syndrome

Vasoconstrictor Drug Treatment

Once the diagnosis of AKI–HRS is established, the vasopressin analogue terlipressin is considered the first-line vasoconstrictor drug in the treatment of HRS where available89,90, it is not available in the United States (Figure 1D). Terlipressin generally is administered initially at a dose of 0.5 to 1 mg intravenous (IV) bolus, every 4 to 6 hours; the dose can be increased to 2 mg IV bolus every 4 to 6 hours if there is less than a 25% reduction in serum Cr level after 3 days and no side effects occur.35,89–91 Increasing experience with continuous-infusion terlipressin has accumulated, suggesting it may be the preferred dosing regimen.92 Terlipressin should be continued after a maximum of 14 days of treatment if there is no improvement in renal function.35,89,91 Where terlipressin is not available, octreotide, a somatostatin analogue in combination with midodrine, an \(\alpha \)-adrenergic agonist, is the recommended drug regimen for the treatment of HRS type 1.93,94 Octreotide is administered as 100 to 200 \(\mu \)g subcutaneously every 8 hours.35,89–91,93,94 Midodrine is administered as 7.5 mg orally 3 times a day up to 12.5 mg orally 3 times a day; the dose should be titrated to achieve an increase of 15 mm Hg in mean arterial pressure.35,89–91,93,94 Noradrenaline, an \(\alpha \)-adrenergic agonist, may be used for the treatment of HRS type 1; cardiac monitoring in an intensive care unit is required.35,89–91,93,94 Noradrenaline is administered at 0.5 to 3 mg/h continuous IV infusion, titrating dosing to achieve an increase of 10 mm Hg in mean arterial pressure.35,89–91,93,94 Albumin should be given in combination with any vasoconstrictor drug regimens.55,89–91,93,94 The recommended dose is generally 20 to 40 g IV once daily after the initial dose of albumin is administered as 1 g/kg/d for 2 days.35,89–91,93,94

Several meta-analyses95–102 have evaluated the effectiveness of vasoconstrictors92,103–117 for reversal of HRS (Table 2). All of these studies showed that terlipressin was significantly superior to placebo with or without albumin.95–100,102 Comparisons of terlipressin with noradrenaline and noradrenaline with octreotide plus midodrine did not show any significant difference in reversing HRS.95,97,98,101 Terlipressin was significantly more efficacious in reversing HRS compared with octreotide plus midodrine.97,101 A pooled analysis of the 2 large, placebo-controlled, randomized studies in patients with HRS type 1 showed that terlipressin plus
<table>
<thead>
<tr>
<th>Meta-analysis studies</th>
<th>Studies, n</th>
<th>Drug combinations</th>
<th>OR or RR for HRS reversal (95% CI)</th>
<th>Heterogeneity, I^2</th>
<th>Test for overall effect, P value</th>
<th>Studies included in the meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrizi et al96 (2009)</td>
<td>5</td>
<td>Terlipressin vs placebo</td>
<td>OR, 8.09; (3.52–18.59)</td>
<td>41%</td>
<td>.0001</td>
<td>Hadengue et al106 (1998), Solanki et al112 (2003), Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008)</td>
</tr>
<tr>
<td>Glud et al99 (2010)</td>
<td>4</td>
<td>Terlipressin alone or with albumin vs no intervention or albumin</td>
<td>RR, 3.76 (2.21–6.39)</td>
<td>0%</td>
<td>Not reported</td>
<td>Solanki et al112 (2003), Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008)</td>
</tr>
<tr>
<td>Sagi et al102 (2010)</td>
<td>4</td>
<td>Terlipressin vs placebo</td>
<td>RR, 3.66 (2.15–6.23)</td>
<td>0%</td>
<td><.00001</td>
<td>Solanki et al112 (2003), Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008)</td>
</tr>
<tr>
<td>Dobre et al95 (2011)</td>
<td>4</td>
<td>Terlipressin vs placebo</td>
<td>OR, 7.47 (3.17–17.59)</td>
<td>24%</td>
<td><.00001</td>
<td>Solanki et al112 (2003), Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008)</td>
</tr>
<tr>
<td>Glud et al100 (2012)</td>
<td>4</td>
<td>Terlipressin alone or with albumin vs no intervention or albumin</td>
<td>RR, 3.76 (2.21–6.39)</td>
<td>0%</td>
<td><.00001</td>
<td>Solanki et al112 (2003), Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008)</td>
</tr>
<tr>
<td>Mattos et al101 (2016)</td>
<td>4</td>
<td>Terlipressin vs noradrenaline</td>
<td>RR, 1.03 (0.81–1.31)</td>
<td>0%</td>
<td>.80</td>
<td>Alessandria et al103 (2007), Sharma et al110 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008), Boyer et al117 (2016)</td>
</tr>
<tr>
<td>Gifford et al98 (2017)</td>
<td>5</td>
<td>Terlipressin ± albumin vs no intervention/ placebo ± albumin</td>
<td>RR, 2.54 (1.51–4.26)</td>
<td>52%</td>
<td>.0004</td>
<td>Solanki et al112 (2003), Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008), Singh et al111 (2012), Ghosh et al116 (2013)</td>
</tr>
<tr>
<td>1</td>
<td>Terlipressin infusion vs terlipressin bolus</td>
<td>RR, 1.22 (0.77–1.93)</td>
<td>Not applicable</td>
<td>.40</td>
<td>Cavallin et al92 (2016)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Terlipressin vs noradrenaline</td>
<td>RR, 0.99 (0.67–1.45)</td>
<td>0%</td>
<td>.94</td>
<td>Alessandria et al105 (2007), Sharma et al110 (2008), Sing et al111 (2012)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Terlipressin + albumin vs dopamine + standard care</td>
<td>RR, 2.00 (1.14–3.52)</td>
<td>Not applicable</td>
<td>.02</td>
<td>Silawat et al114 (2011)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Noradrenaline + albumin vs octreotide + midodrine + albumin</td>
<td>RR, 1.25 (0.70–2.24)</td>
<td>Not applicable</td>
<td>.45</td>
<td>Tavakkoli et al113 (2012)</td>
<td></td>
</tr>
<tr>
<td>Facciorusso et al97 (2017)</td>
<td>5</td>
<td>Terlipressin vs placebo</td>
<td>OR, 4.48 (1.88–10.67)</td>
<td>60%</td>
<td>.0007</td>
<td>Sanyal et al109 (2008), Martin-Llahi et al107 (2008), Neri et al108 (2008), Zafar et al116 (2012), Boyer et al117 (2016)</td>
</tr>
<tr>
<td>4</td>
<td>Terlipressin vs noradrenaline</td>
<td>OR, 0.89 (0.47–1.69)</td>
<td>0%</td>
<td>.72</td>
<td>Alessandria et al105 (2007), Sharma et al110 (2008), Singh et al111 (2012), Indrabi et al115 (2013)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Terlipressin vs octreotide + midodrine</td>
<td>OR, 26.25 (3.07–224.21)</td>
<td>Not applicable</td>
<td>.003</td>
<td>Cavallin et al92 (2016)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Noradrenaline vs octreotide + midodrine</td>
<td>OR, 2.50 (0.19–32.19)</td>
<td>Not applicable</td>
<td>.48</td>
<td>Tavakkoli et al113 (2012)</td>
<td></td>
</tr>
</tbody>
</table>

HRS, hepatorenal syndrome; OR, odds ratio; RR, risk ratio.
albumin was significantly more effective than placebo plus albumin.116

Meta-analyses96–102 also have evaluated drug therapies92,103–117,119–121 for mortality reduction without liver transplantation (Table 3). Meta-analyses of terlipressin vs noradrenaline, dopamine plus furosemide, and octreotide plus midodrine did not show any significant reduction in mortality.97,98,101 Similarly, meta-analyses of noradrenaline vs octreotide plus midodrine did not significantly reduce mortality.97,98 Although meta-analyses showed that there was no survival superiority of terlipressin over noradrenaline,97,98,101 terlipressin was shown to be more economical compared with noradrenaline in the treatment of HRS.101 Although these results are disappointing, it must be noted that interventions to improve renal function do not affect the underlying liver disease in these patients. Any intervention should not be expected to have more than a modest effect on survival, which would be difficult to show even in very large studies.

\textit{Renal Replacement Therapy, Transjugular Intrahepatic Portosystemic Shunt, and Molecular Adsorbent Recirculating System}

Nonvasoconstrictor treatment of HRS includes renal replacement therapy, molecular adsorbent recirculating system (MARS), and transjugular intrahepatic portosystemic shunting. In patients with irreversible HRS with no response to vasoconstrictor drugs, renal replacement therapy either in the form of hemodialysis or continuous venovenous hemofiltration should be considered, particularly in the presence of intractable fluid overload and acidosis, uremic symptoms, and electrolyte abnormalities (ie, hyperkalemia, hyponatremia, hypercalcemia).35,89,93,122–124 In a randomized trial of 189 patients with acute-on-chronic liver failure, MARS significantly decreased serum Cr level at day 4 compared with standard medical therapy.125 However, there was no significant difference in the 28-day mortality rate between patients with HRS who had MARS compared with those who had standard medical therapy.125 A prospective, randomized, controlled trial showed that patients with HRS type 1 who were treated with MARS, standard medical treatment, and hemodiafiltration had a significant reduction in serum Cr and mortality compared with patients who were treated with standard medical treatment and hemodiafiltration.126 Although transjugular intrahepatic portosystemic shunting generally is contraindicated in patients with unresolved HRS type 1, it was shown to reduce the risk of HRS in patients with cirrhosis and diuretic-refractory ascites.127

\textit{Liver Transplantation Alone Versus Simultaneous Liver–Kidney Transplantation}

Liver transplantation, when available and possible, is clearly the optimal treatment for HRS type 1.95,96 SLKT is the procedure of choice if native kidney recovery is not expected after LTA.27,55 Identifying patients who will require SLKT vs LTA remains a major challenge. According to SLKT Summit Consensus recommendations published in 2012, liver transplant candidates with AKI used to be qualified for SLKT if they had stage 3 AKI for 4 weeks or GFR measured by iothalamate clearance of 25 mL/min or less or GFR estimated by the MDRD-6 equation of 35 mL/min or less for 4 weeks.27 Candidates with CKD used to be qualified if they have GFR measured by iothalamate clearance of 30 mL/min or less, or GFR estimated by the MDRD-6 equation of 40 mL/min or less, or proteinuria of 2 g/d or greater, greater than 30% global glomerulosclerosis or interstitial fibrosis, or metabolic disease for at least 3 months.27 These eligibility criteria do not appear to be applied strictly and show large variations among liver transplant centers in the United States.27,35 Organ Procurement and Transplantation Network data show that the percentage of adult SLKTs among all adult deceased donor liver transplants in the United States increased by 150%; from 4% in 2002 to 10% in 201627 (Figure 3). The cause for this increase is unclear. Supplementary Table 1 shows studies that reported potential predictors56,129–133 and the percentage of native kidney recovery56,129–134 after SLKT or LTA. Although multiple factors (renal ultrasound findings, warm ischemia, severity of AKI, plasma protein markers, diabetes, age, duration of dialysis, retransplantation125) have been suggested to be associated with native kidney recovery (Supplementary Table 1), a lack of reliable biomarkers of native kidney recovery after liver transplantation validated in large cohorts appears to be a major contributor to the dramatic increase in the percentage of adult SLKTs among adult deceased liver transplantations. In addition, under the Share 35 policy implemented in 2013, more patients with cirrhosis and renal dysfunction receive transplants because of the heavily weighted serum Cr value in the MELD score. The Share 35 policy assigns a higher priority for liver transplantation to regional waitlist candidates who have MELD scores of 35 or higher than local liver transplant candidates who have a MELD score less than 35.135 In their recent analysis of Organ Procurement and Transplantation Network data, Formica et al36 showed that approximately 50% of donor kidneys implanted in liver transplant recipients had a low kidney donor profile index (kidneys with low kidney donor profile index values have increased donor quality and low risk of graft failure after a kidney transplant137). Originally, these were prioritized for children and other selected patients on the kidney transplant waiting list and this would correspond to approximately 250 donor kidneys per year on the kidney transplant list.136 In order to optimize the use of donor kidneys, while increasing the availability of kidneys for prioritized kidney transplant candidates, OPTN published new guidelines for SLKT to be effective August 10, 2017.138

\textbf{Conclusions}

Recent developments in HRS have created a state of flux in this already somewhat confusing and very challenging
<table>
<thead>
<tr>
<th>Meta-analysis studies</th>
<th>Studies, n</th>
<th>Drug combinations</th>
<th>OR or RR for all-cause mortality or survival (95% CI)</th>
<th>Heterogeneity, I^2</th>
<th>Test for overall effect, P value</th>
<th>Studies included in the meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrizi et al (2009)</td>
<td>3</td>
<td>Terlipressin alone or with albumin vs no intervention or albumin</td>
<td>RR, 0.80 (0.66–0.97)</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Gluud et al (2010)</td>
<td>5</td>
<td>Terlipressin + albumin vs albumin</td>
<td>RR, 0.81 (0.68–0.97)</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Gifford et al (2017)</td>
<td>4</td>
<td>Terlipressin ± albumin vs no intervention/placebo ± albumin</td>
<td>RR, 0.79 (0.63–1.01)</td>
<td>53%</td>
<td>.06</td>
<td>Solanki et al (2003), Sanyal et al (2008), Neri et al (2008), Boyer et al (2016)</td>
</tr>
<tr>
<td>Fabrizi et al (2009)</td>
<td>3</td>
<td>Terlipressin infusion vs terlipressin bolus</td>
<td>RR, 1.58 (0.86–2.91)</td>
<td>Not applicable</td>
<td>.14</td>
<td>Cavallin et al (2016)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Terlipressin vs noradrenaline</td>
<td>RR, 1.04 (0.74–1.47)</td>
<td>0%</td>
<td>.81</td>
<td>Alessandria et al (2007), Sharma et al (2008), Singh et al (2012)</td>
</tr>
<tr>
<td>Fabrizi et al (2009)</td>
<td>2</td>
<td>Terlipressin + albumin vs dopamine + standard care</td>
<td>RR, 0.98 (0.76–1.26)</td>
<td>0%</td>
<td>.87</td>
<td>Silawat et al (2011), Srivastava et al (2015)</td>
</tr>
<tr>
<td>Fabrizi et al (2009)</td>
<td>1</td>
<td>Noradrenaline + albumin vs octreotide + midodrine + albumin</td>
<td>RR, 1.50 (0.60–3.78)</td>
<td>Not applicable</td>
<td>.39</td>
<td>Tavakkoli et al (2012)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Terlipressin vs noradrenaline</td>
<td>OR, 1.02 (0.46–2.28)</td>
<td>0%</td>
<td>.95</td>
<td>Alessandria et al (2007), Sharma et al (2008), Singh et al (2012), Indrabi et al (2013)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Terlipressin vs dopamine + furosemide</td>
<td>OR, 1.00 (0.18–5.67)</td>
<td>Not applicable</td>
<td>1.00</td>
<td>Srivastava et al (2015)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Terlipressin vs octreotide + midodrine</td>
<td>OR, 0.90 (0.27–3.05)</td>
<td>Not applicable</td>
<td>.87</td>
<td>Cavallin et al (2015)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Noradrenaline vs octreotide + midodrine</td>
<td>OR, 2.50 (0.29–21.40)</td>
<td>Not applicable</td>
<td>.40</td>
<td>Tavakkoli et al (2012)</td>
</tr>
</tbody>
</table>

OR, odds ratio; RR, risk ratio.

aSurvival was reported instead of mortality.
diagnostic and therapeutic arena. It still remains unclear as to how to best practically assess GFR in patients with cirrhosis. Serum Cr value alone is limited but still remains the best practical assessment of renal function. Although newer models such as the Cr–cystatin GFR equation for cirrhosis are promising, it remains to be seen whether they will find widespread acceptance and application. The clinical implications of the newly proposed diagnostic criteria based on the dynamic, serial changes in serum Cr and the Acute Kidney Injury Network. Kidney Disease Improving Outcomes clinical practice guidelines for AKI, ADQI and IAC classification systems, and revised recommendations of the IAC remain unclear. These new diagnostic criteria certainly will result in more hospitalized patients with cirrhosis deemed to have AKI, but whether this will result in earlier treatment and improved outcomes is not known. Renal biomarkers, particularly associated with metabolomic profiling, ultimately may prove to be helpful in more precisely establishing a diagnosis of HRS, but they currently appear to be of limited practical clinical value. Current drug therapy with vasopressors, such as terlipressin and norepinephrine, are effective in improving renal function, although clearly more effective therapy to increase the rates of HRS reversal is needed. The increasing recognition of the roles of NO and the ACLF inflammatory cascade should allow the development of nonvasopressor interventions in combination therapies. Liver transplantation remains the definitive treatment for HRS; the current main challenge is the accurate identification of those patients who require SLKT vs LTA. A practical, robust, evidence-based algorithm to predict native kidney recovery after LTA remains an unmet medical need.

Supplementary Material

Note: To access the supplementary material accompanying this article, visit the online version of Clinical Gastroenterology and Hepatology at www.cghjournal.org, and at http://dx.doi.org/10.1016/j.cgh.2017.05.041.

References

13. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault

Reprint requests
Address requests for reprints to: Ayse L. Mindikoglu, MD, MPH, Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, 6620 Main Street, Suite 1450, Houston, Texas 77030. e-mail: Ayse.Mindikoglu@bcm.edu; fax: (713) 610-2479.

Acknowledgments
The authors thank Scott C. Holmes, CMI, a member of the Michael E. DeBakey Department of Surgery Research Core at Baylor College of Medicine, for his assistance during the preparation of Figures 1 and 2. The contents of this project are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the NIH.

Conflicts of interest
These authors disclose the following: Ayse L. Mindikoglu has a provisional patent application (serial no: 62/442,479) filed with the US patent office on January 05, 2017 (Metabolomic Markers to Predict Mortality in Patients with Cirrhosis); and Stephen C. Pappas has served as a consultant for Orphan Therapeutics, LLC, and Ikaria, Inc, a Mallinckrodt Company.

Funding
This project was supported in part by NIH Public Health Service grant P30DK056338, which funds the Texas Medical Center Digestive Disease Center.
Supplementary Table 1. Predictors and Percentage of Native Kidney Recovery After SLKT or LTA

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of liver transplant</th>
<th>Predictors</th>
<th>Subjects, n</th>
<th>Recovery, %</th>
<th>Definition of native kidney recovery</th>
<th>Method used to evaluate native kidney recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levitsky et al (2012)</td>
<td>SLKT</td>
<td>Renal ultrasound findings</td>
<td>78</td>
<td>51</td>
<td>>20 mL/min</td>
<td>GFR measured by Tc-99m DTPA renal scan</td>
</tr>
<tr>
<td>Francis et al (2012)</td>
<td>SLKT</td>
<td>N/A</td>
<td>13</td>
<td>38</td>
<td>>40% of total native kidney function</td>
<td>GFR measured by MAG3 renal scan</td>
</tr>
<tr>
<td>Nadim et al (2012)</td>
<td>LTA</td>
<td>Etiology of AKI based on RIFLE classification</td>
<td>118</td>
<td>ATN group, 71</td>
<td><50% increase in serum Cr</td>
<td>Serum Cr</td>
</tr>
<tr>
<td>Sharma et al (2013)</td>
<td>LTA</td>
<td>Diabetes, retransplant, age, duration of dialysis</td>
<td>2112</td>
<td>91</td>
<td>Not on dialysis, not listed for kidney transplant, did not receive kidney transplant after LTA</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Levitsky et al (2014)</td>
<td>LTA</td>
<td>Biomarkers (osteopontin, tissue inhibitor of metalloproteinase-1, diabetes, age)</td>
<td>16 test</td>
<td>58</td>
<td>Estimated GFR >50 mL/min</td>
<td>GFR estimated by MDRD-4 equation</td>
</tr>
<tr>
<td>Wong et al (2015)</td>
<td>LTA</td>
<td>Duration of dialysis</td>
<td>62</td>
<td>76</td>
<td>HRS reversal defined as serum Cr < 1.5 mg/dL</td>
<td>Serum Cr</td>
</tr>
<tr>
<td>Laskey et al (2016)</td>
<td>LTA</td>
<td>Liver graft warm ischemia time</td>
<td>40</td>
<td>65</td>
<td>Not on dialysis, not listed for kidney transplant, serum Cr < 2 mg/dL after LTA</td>
<td>Serum Cr</td>
</tr>
</tbody>
</table>

DTPA, diethylene triamine pentaacetic acid; MAG3, mercaptoacetyltriglycine; RIFLE, risk, injury, failure, loss, and end-stage renal disease.
Features that suggest ATN and not HRS as the cause of acute kidney injury include
 a. improvement in serum creatinine after albumin boluses
 b. the presence of granular casts in the urine
 c. urine osmolality equal to plasma osmolality
 d. a normal renal ultrasound

True or False

Patients with decompensated cirrhosis have a decreased tubular excretion of creatinine
A hallmark of HRS is a marked reduction in renal medullary blood flow
Patients with HRS and serum bilirubin levels >10 respond less often to HRS therapy, possibly due to bile cast nephropathy or proximal renal tubulopathy
HRS is always reversible with liver transplant
Midodrine + albumin therapy for HRS should be used together with subcutaneous octreotide
A rise in serum creatinine >0.3mg/dL above baseline is considered a marker of AKI in cirrhosis
NSAID’s can precipitate AKI in cirrhosis by reducing cortical blood flow in the kidneys
Vasoconstrictor therapy for HRS plus albumin results in improved mortality